4.2.19 La population d'une culture bactérienne double toutes les 12 heures. Supposons

31.05.24

que la population initiale est de 10'000 bactéries. a) Déterminer la relation qui représente la taille de la population N après t heures.

b) Combien y aura-t-il de bactéries après une semaine?

c) Au bout de combien de temps le nombre de bactéries aura-t-il triplé?

*	c 4 !	

Temps[R]	# bacteries	
O 12 24 36 Ł	10'000 2 x 2 20'000 2 x 2 40'000 2 x 2 80'000 2 x 2 N(t)	21 2 ² 2 ³

2)
$$N(t) = 100000 2$$
Population
initiale

Modèle exponentielle
$$N(t) = P_0 e^{Kt}$$

Déterminons Po et:

•
$$N(0) = 10'000$$
: $P_0 e^{K \cdot 0} = P_0 \cdot 1 = 10'000$

•
$$N(12) = 20'000$$
: $10'000 e^{12K} = 20'000$

$$N(12) = 20'0000$$
: $10'000 e^{12K}$

$$e^{12K} = 2$$
 $ln(e^{12K}) = ln(2)$
 $12K \cdot ln(e) = ln(e)$
 $12K \cdot 1 = ln(2)$

$$K = \frac{\ln(2)}{12}$$

t 20

D'où la fonction:
$$N(t) = 10'0000 e^{\frac{\ln(2)}{12}t}$$

Ces deux fonctions sont égales. En effet:

$$e^{\frac{\ln(2)}{12}} = \left(e^{\ln(2)}\right)^{\frac{1}{12}} = 2$$

b) Combien y aura-t-il de bactéries après une semaine?

c) Au bout de combien de temps le nombre de bactéries aura-t-il triplé?

b)
$$N(168) = 10'000 2^{\frac{168}{12}} = 10'000 2 = 163'840'000 bactéries$$

1 Semanne = 168

$$\rightarrow$$
 4, 2, 25

4.2.22 On place un capital C à un taux d'intérêt annuel i pendant une durée de n années et on obtient le montant C_n . Remplir le tableau ci-dessous :

-)	C	i	n	C_n
a) _	4'720	3,5%	12 ans	
b)		3,5%	$24 \mathrm{\ ans}$	5′388.65
ر) آ	9'440	3,5%		11'604.17
d)	790.—		72 ans	9'404.43

Posons i/no = r

Lemps [an]	intérêtj	capital			
012•	0 165, 20 170, 98	4720,- 4885,20 5056,18			$= C_0 \left(1 + r \right)$ $= C_1 \left(1 + r \right)^2$ $= C_1 \left(1 + r \right)^2$
	In	$C_{\eta} = C_{\circ}$	$\left(\frac{1}{100}\right)^{n}$		

Exemple
$$C_0 = 100$$
, pendant 10 ans $a = 1\%$

$$C_{10} = 100 \cdot 1,01 \stackrel{10}{=} 110,46$$