0.1 (59)
1)
$y=\frac{x^{4}}{16} \quad, y^{\prime}=\frac{x^{3}}{4}$

$$
y^{1 / 2}=\frac{x^{2}}{4}
$$

Eéquation differentielle du premier ordre

Aindi: $\quad x \cdot y^{\frac{1}{2}}=x \cdot \frac{x^{2}}{4}=\frac{x^{3}}{4}=y^{\prime}$
2)

$$
\begin{aligned}
& y=x e^{x} \\
& y^{\prime}=e^{x}+x e^{x}=(1+x) e^{x} \\
& y^{\prime \prime}=(2+x) e^{x}
\end{aligned}
$$

EED du 2eme ordres

Hinsi $(2+x) e^{x}-2(1+x) e^{x}+x e^{x}=[\underbrace{2+x-2-2 x+x}] e^{x}$

$$
=0
$$

$0.2 \quad$ (59)
$x^{2}+y^{2}=4$, pour $\left.x \in\right]-2 ; 2$ eot une solution implicite de l'ED $y^{\prime}=\frac{-x}{y}$
En effer, dérivons la relatron:

$$
\begin{aligned}
2 x+2 y y^{\prime} & =0 \\
\Leftrightarrow \quad x+y y^{\prime} & =0 \\
y y^{\prime} & =-x \\
y^{\prime} & =\frac{-x}{y}
\end{aligned}
$$

$(\gamma): x^{2}+y^{2}=4$ ost un cercle de clutre $(0,0)$ et de rayon 2 .
dinsi, pour $y>0$ et $x \in]-2,2[$, on peot eirne

$$
y=\sqrt{4-x^{2}}
$$

$$
y^{\prime}=\frac{-2 x}{2 \sqrt{4-x^{2}}}=\frac{-x}{\sqrt{4-x^{2}}}=\frac{-x}{y}
$$

$0,3(59)$
ED de 2eme ordre: $\quad y^{\prime \prime}+16 y=0$

$$
\begin{array}{lll}
y_{1}=c_{1} \cos (4 x) & y_{1}^{\prime}=-4 c_{1} \sin (4 x) & y_{1}^{\prime \prime}=-16 c_{1} \cos (4 x) \\
y_{2}=c_{2} \sin (4 x) & y_{2}^{\prime}=4 c_{2} \cos (4 x) & y_{2}^{\prime \prime}=-16 c_{2} \sin (4 x) \\
y=y_{1}+y_{2} &
\end{array}
$$

Avec $y_{1}:-16 c_{1} \cos (4 x)+16 c_{1} \cos (4 x)=0$
Avee $y_{2}:-16 c_{2} \sin (4 x)+16 c_{2} \sin (4 x)=0$
Conme $y_{1}^{\prime \prime}+16 y_{1}=0$ et $y_{2}^{\prime \prime}+16 y_{2}=0$, slors

$$
\underbrace{y_{1}^{\prime \prime}+y_{2}^{\prime \prime}+16}_{y^{\prime \prime}}+16 \underbrace{\left(y_{1}+y_{2}\right.}_{y})=0
$$

$0.4(59)$

1) ED du fer ordre: $y^{\prime}-3 y=-3$
$y=\lambda e^{3 x}+1$ eot une solution de l'equation.
$y^{\prime}=3 \lambda e^{3 x}$. Donc

$$
\begin{aligned}
y^{\prime}-3 y & =3 \lambda e^{3 x}-3\left(\lambda e^{3 x}+1\right) \\
& =32 e^{3 x}-3 \lambda e^{3 x}-3=-3
\end{aligned}
$$

2) ED du for ordre: $y^{\prime}\left(x^{2}-1\right)=x y$

$$
c \neq 0 \quad x^{2}+c y^{2}=1
$$

En dérivant: $\quad 2 x+2 c y y^{\prime}=0$

$$
y^{\prime}=\frac{-x}{c y}
$$

Comme $a^{2}=1-c y^{2}$, zlors

$$
y^{\prime}\left(x^{2}-1\right)=\frac{-x}{c y}\left(1-c y^{2}-1\right)=\frac{-x}{c y} \cdot\left(-c y^{2}\right)=x y
$$

$0,5 \quad(59)$
1)

2)

tangente:

$$
y=f^{\prime}(x)(x-x)+f(x)
$$

hormale:

$$
\begin{aligned}
& y=-\frac{1}{f^{(1)}(x)} x+h \\
& \longrightarrow x
\end{aligned}
$$

$$
\begin{aligned}
& f(a)=-\frac{1}{f^{\prime}(a)} a+h \Rightarrow h=f(a)+\frac{a}{f^{\prime}(x)} \\
& y=\frac{-x}{f^{\prime}(a)}+\frac{2}{f^{\prime}(a)}+f(a) \quad x=a+f^{\prime}(a) f(x) \\
& N\left(a+f^{\prime}(a) f(a), 0\right)
\end{aligned}
$$

$P(a, f(a))$
Le milieu de NP eot sur $0 y$. Donc $y_{M}=0$

$$
\begin{gathered}
\Rightarrow 2 x+f^{\prime}(a) f(x)=0 \\
2 x+y^{\prime} y=0
\end{gathered}
$$

$0.6 \quad 159)$

$$
\begin{aligned}
y^{\prime} & =k y \quad \text { avec } \quad k \neq 0 \\
\frac{y^{\prime}}{y} & =k \quad \text { On integre } \\
\ln |y| & =k x+c \\
y & =e^{k x+c} \\
y & =\alpha e^{k x}
\end{aligned}
$$

0,7 (59)

$$
\tan (\pi-\theta)=\tan (\theta)=-\tan (\theta)
$$

$$
\begin{aligned}
& \tan \left(\theta^{\prime}\right)=\frac{y}{m} \\
& -y^{\prime}=\frac{y}{\sqrt{s^{2}-y^{2}}}
\end{aligned}
$$

$0.8 \quad(60)$

$$
\left.\begin{aligned}
& y=\lambda e^{-x} \\
& y^{\prime}=-\lambda e^{-x}
\end{aligned} \right\rvert\, \Rightarrow y=-y^{\prime} \text { ou } \quad y+y^{\prime}=0
$$

2)

$$
\begin{aligned}
& y=\lambda \ln (x)+1 \\
& y^{\prime}=\frac{\lambda}{x} \\
& y=\frac{\underbrace{x}_{y^{\prime}}}{x} \cdot x \ln (x)+1=y^{\prime} x \ln (x)+1 \\
& y=x y^{\prime} \ln (x)+1
\end{aligned}
$$

3)

$$
\begin{aligned}
y & =\lambda_{1} \sin (\omega t)+\lambda_{2} \cos (\omega t) \\
y^{\prime} & =\lambda_{1} \omega \cos (\omega t)-\lambda_{2} \omega \sin (\omega t) \\
y^{\prime \prime} & =-\lambda_{1} \omega^{2} \sin (\omega t)-\lambda_{2} \omega^{2} \cos (\omega t) \\
& \leq-\omega^{2}\left(\lambda_{1} \sin (\omega t)+\lambda_{2} \cos (\omega t)\right) \\
y^{\prime \prime} & =-\omega^{2} y \quad \text { ov } \quad y^{\prime \prime}+\omega^{2} y=0
\end{aligned}
$$

4)

$$
\begin{aligned}
y & =\lambda_{1} e^{4 t}+\lambda_{2} e^{-4 t} \\
y^{\prime} & =4 \lambda_{1} e^{4 t}-4 \lambda_{2} e^{-4 t} \\
y^{\prime \prime} & =16 \lambda_{1} e^{4 t}+16 \lambda_{2} e^{-4 t} \\
& =16\left(\lambda_{1} e^{4 t}+\lambda_{2} e^{-4 t}\right) \\
y^{\prime \prime} & =16 y \quad \text { ou } \quad y^{\prime \prime}-16 y=0
\end{aligned}
$$

5)

$$
\begin{aligned}
& y=2 x^{2}+b x+c \\
& y^{\prime}=22 x+b \\
& y^{\prime \prime}=2 x \\
& y^{\prime \prime}=0
\end{aligned}
$$

$0,9 \quad(60)$

1) $y=y^{\prime} x \quad$ ou $\quad y-y^{\prime} x=0$
ou $\quad x y^{\prime}-y=0$
2) ((f): $(x-2)^{2}+y^{2}=a^{2}$

Derisons: $\quad 2(x-a)+2 y y^{\prime}=0$
ov $x-x=-y y^{\prime}$
et $a=x+y y^{\prime}$
daus (γ):

$$
\begin{aligned}
\left(y y^{\prime}\right)^{2}+y^{2} & =\left(x+y y^{\prime}\right)^{2} \\
& =x^{2}+2 x y y^{\prime}+\left(y y^{\prime}\right)^{2}
\end{aligned}
$$

et wind $\quad 2 x y y^{\prime}=y^{2}-x^{2}$
3) $\left\{_{(0,0)}^{\hat{y}^{y}}(1,1)\right.$

$$
y=2 x^{2}+b x+c \quad \Rightarrow c=0
$$

$$
\text { et } 1=a+b \Rightarrow b=a-1
$$

$$
y=2 x^{2}+(1-2) x
$$

Derisons: $\quad y^{\prime}=2 a x+(1-a)$

$$
y^{\prime}-1=a(2 x-1) \Rightarrow a=\frac{y^{\prime}-1}{2 x-1}
$$

$$
\begin{aligned}
y= & \frac{y^{\prime}-1}{2 x-1} x^{2}+\left(1-\frac{y^{\prime}-1}{2 x-1}\right) x \\
\text { ou } \quad & y(2 x-1)=\left(y^{\prime}-1\right) x^{2}+\left(2 x-1-y^{\prime}+1\right) x \\
& y(2 x-1)=\left(y^{\prime}-1\right) x^{2}+2 x^{2}-y^{\prime} \\
& y(2 x-1)=\left(x^{2}-1\right) y^{\prime}-x^{2}+2 x^{2}
\end{aligned}
$$

donc $\left(x^{2}-1\right) y^{\prime}-(2 x-1) y+x^{2}=0$
$0.10(60)$

1) $P^{\prime}=K\left(200^{\prime} 000-P\right)$ of $P^{\prime}=\frac{d P}{d t}$
2) $\frac{d p}{d T}=k \frac{p}{T^{2}}$
3)

tangente: $y=f^{\prime}(a)(x-1)+f(a)$

$$
\begin{array}{r}
2 x y^{2}=y-y^{\prime} x \\
y^{\prime} x=-2 x y^{2}+y
\end{array}
$$

4)

$$
\begin{aligned}
& x y=4 \int y d x \\
& y+x y^{\prime}=4 y \\
& 3 y=x y^{\prime} \\
\Rightarrow & y^{\prime}=\frac{3 y}{x}
\end{aligned}
$$

$0.11(61)$

$$
\frac{P(t)}{d t}=K P(t)+m
$$

$0.12(61)$
J^{\prime} aurais dit $\frac{A(t)}{M}=K(M-A(t))$

$$
\text { Masi } \quad A^{\prime}(t)=x(H-A(t))
$$

$0.13(61)$

$$
\begin{aligned}
& m g-K x=m a \\
& m g-K x=m x^{\prime \prime}
\end{aligned}
$$

