2M14 - Vendredi 21 novembre 2025

Analyse 1 – TE 843A

Problème	1	2	3	4	5	6	7	Total
Points	6	4	6	6	6	6	6	40
Points obtenus								

Problème 1 (6 points)

On considère l'ensemble

$$E = \left\{ \frac{n+8}{2\,n+10} \mid n \in \mathbb{N} \right\}$$

Donner, s'ils existent, le minimum, le maximum, l'ensemble des majorants, l'ensemble des minorants, la borne supérieure et la borne inférieure de l'ensemble E.

$$E = \left\{ \begin{array}{l} \frac{4}{5} i \frac{3}{4} i \frac{10}{14} = \frac{5}{7} i \frac{11}{16} i \frac{12}{18} = \frac{2}{3} i \dots \right\} \\ = \left\{ \begin{array}{l} 0, 8; 0, 75; 0, 744...; 0, 6875; 0, 66...; \dots \right\} \end{array} \right.$$

minimum: n'existe pas

 $\frac{\text{maximum}!}{5}$

ensemble des majorants: [4;+∞[

ensemble des minorants:]-w; 1/2]

borne Superieure: 4

borne inférieure: 12

Problème 2 (4 points)

Déterminer si les applications f_1 et f_2 sont injectives, surjectives. Justifier.

a)
$$f_1 : \mathbb{R} \to \mathbb{R}$$

 $x \mapsto 4x-3$

b)
$$f_2 : \mathbb{Z} \to \mathbb{N}$$

 $x \mapsto x^4$

a) Injective:
$$a,b \in \mathbb{R}$$
 telt que $f_1(a) = f_1(b)$
 $4a-3 = 4b-3 <=> 2 = b$
 f_1 injective

Surjective:
$$y \in \mathbb{R}$$
, trovvons $x \in \mathbb{R}$ tel que $f(x) = y$.

$$40x-3=4 \stackrel{=}{=} 40x=3+3 \stackrel{=}{=} 30$$
 6_1 surjective

b) Injective:
$$f_2(-1) = f_2(1) = 1$$
, non in jective

Surjective: $f_2(x) = 2 \iff x^4 = 2 \iff x = \pm 4\sqrt{2}$

non surjective

Problème 3 (6 points)

Déterminer l'ensemble de définition des fonctions suivantes :

a)
$$f(x) = \frac{x^2 + 2x + 1}{6x^2 + 7x - 3}$$
 b) $g(x) = \sqrt{\frac{5 - 2x}{x + 6}}$ c) $h(x) = \frac{\sin(\frac{1}{x})}{x^2 - 2x + 1}$

b)
$$g(x) = \sqrt{\frac{5 - 2x}{x + 6}}$$

c)
$$h(x) = \frac{\sin\left(\frac{1}{x}\right)}{x^2 - 2x + 1}$$

a)
$$6x^{2} + 7x - 3 = 0$$

 $(3x - 1)(2x + 3) = 0 \iff x = \frac{1}{3} \text{ ov } x = \frac{-3}{2}$
 $ED(f) = \mathbb{R} - \left\{ \frac{1}{3}; -\frac{3}{2} \right\}$

b)
$$\frac{x - 6}{\frac{5-2x}{x+6}} - \frac{5/2}{}$$

$$ED(\ell) = \left] - \ell! \frac{5}{2} \right]$$

c)
$$h(\alpha) = \frac{\sin(\frac{1}{x})}{(x-1)^2}$$

Problème 4 (6 points)

Une suite u_n converge vers une limite $\ell \in \mathbb{R}$ si pour tout $\epsilon > 0$ il existe $N \in \mathbb{N}$ tel que si n > N, on a

$$|u_n - \ell| < \epsilon$$

On considère la suite

$$u_n = \frac{4 n}{n+6}$$

et on donne $\ell = 4$.

- a) Si $\epsilon=0.001$, calculer la valeur de N à partir de laquelle $|u_n-4|<\epsilon=0.001$.
- b) Démontrer que cette suite converge vers $\ell=4$ au sens de la définition donnée au début du problème.

a)
$$\left| u_{n} - 4 \right| = \left| \frac{4\eta}{n+6} - 4 \right| = \left| \frac{4n - 4n - 24}{n+6} \right| = \frac{24}{n+6} < \frac{1}{1000}$$

b)
$$|U_n-4|<\varepsilon \implies \frac{24}{n+6}<\varepsilon \iff 24<\varepsilon n+6\varepsilon$$

Pair tout
$$n > \frac{24-6E}{E}$$

Pour tout $n > \frac{24-6E}{E}$, on a $|u_n-4| < E$.

Problème 5 (6 points)

Déterminer le plus grand sous-ensemble de définition et l'ensemble d'arrivée pour que la fonction

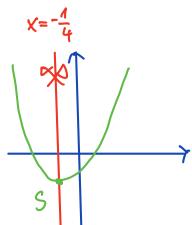
$$f(x) = 2x^2 + x - 6$$

soit une bijection. Puis donner sa réciproque.

• Axe de symétrie:
$$X = \frac{-1}{4}$$

Sommet:
$$f(\frac{-1}{4}) = 2 \cdot \frac{1}{16} - \frac{1}{4} - 6 = \frac{1}{8} - \frac{1}{4} - 6 = \frac{1-2-48}{8}$$

$$= -\frac{49}{8}$$



$$S\left(\frac{-1}{4}, \frac{-49}{8}\right)$$

$$f: \left[-\frac{1}{4!} + \infty \right] \longrightarrow \left[-\frac{49}{8} \right] + \infty \left[$$

$$x \longmapsto 2x^2 + x - 6 \right]$$

$$2x^{2} + x - 6 = 4$$

$$2x^{2} + x$$

$$= 4 + 6$$

$$x^{2} + 2x$$

$$= 4 + 3$$

$$(x + 4)^{2} = 4 + 3 + 4$$

$$(x + 4)^{2} = 4 + 49$$

$$(x + 4)^{2} = 4 + 49$$

$$X = \sqrt{\frac{8y + 49}{16}} - \frac{1}{4}$$

$$\begin{cases} -\frac{49}{8} + \frac{1}{4} & \text{if } \\ -\frac{1}{4} & \text{if } \end{cases}$$

$$\chi \longmapsto \sqrt{8}\chi + 49$$

Problème 6 (6 points)

On considère la suite (u_n) définie par $u_n = \frac{2n-7}{3n+2}$ avec $n \geqslant 1$.

- a) Montrer que (u_n) est strictement croissante.
- b) Démontrer que cette suite admet le nombre m=-1 pour minorant.
- c) La suite (u_n) est-elle convergente ? Si oui, calculer sa limite.

a)
$$U_{n+n} - U_n = \frac{2^n + 2 - 7}{3n + 3 + 2} - \frac{2n - 7}{3n + 2} = \frac{2n - 5}{3n + 5} - \frac{2n - 7}{3n + 2}$$

$$= \frac{(2n - 5)(3n + 2) - (2n - 7)(3n + 5)}{(3n + 5)(3n + 2)}$$

$$=\frac{6n^2-41n-10-6n^2+41n+35}{(3n+5)(3n+2)}=\frac{25}{(3n+5)(3n+2)}>0$$

Un+ 7 Un (Un) est strictement croissante

b)
$$U_{h} - (-1) = \frac{2h - 7}{3h + 2} + 1 = \frac{2h - 7}{3h + 2} + \frac{3h + 2}{3h + 2} = \frac{5h - 5}{3h + 2}$$

$$= \frac{5(h - 1)}{3h + 2} > 0 \quad \text{, si} \quad h > 1$$

donc -1 est le minovant

c)
$$\lim_{h\to\infty} U_n = \frac{2}{3}$$
, (U_n) converge very $\frac{2}{3}$.

Problème 7 (6 points)

Soit la suite (u_n) définie par

$$u_n = n \left(\sqrt{1 + \frac{1}{n}} - 1 \right)$$

pour $n \geqslant 1$.

- a) Calculer u_1 et u_{100} .
- b) Calculer, si elle existe la limite de cette suite.

a)
$$U_1 = 1 \cdot (J_{2-1}) = J_2 - 1 \cong 0,414214$$

 $U_{100} = 100(\sqrt{\frac{101}{100}} - 1) \cong 0,498756$

b)
$$\lim_{h\to\infty} h \left(\sqrt{\frac{h+1}{n}} - 1 \right) = \lim_{h\to\infty} h \cdot \frac{\left(\sqrt{1+\frac{1}{n}} - 1 \right) \left(\sqrt{1+\frac{1}{n}} + 1 \right)}{\sqrt{1+\frac{1}{n}} + 1}$$

$$= \lim_{h\to\infty} \frac{h \left(1+\frac{1}{n} - 1 \right)}{\sqrt{1+\frac{1}{n}} + 1} = \lim_{h\to\infty} \frac{h \cdot \frac{1}{n}}{\sqrt{1+\frac{1}{n}} + 1} = \frac{1}{2}$$